2-D UAV Navigation Solution with LIDAR Sensor under GPS-denied Environment

Unmanned aerial vehicle (UAV) is widely used by many industries these days such as militaries, agriculture, and surveillance. However, one of the main challenges of UAV is navigating through an environment where global positioning system (GPS) is being denied. The main purpose of this paper is to find a solution for UAV to be able to navigate in a GPS denied surrounding without affecting the drone flight performance. There are two ways to overcome these challenges such as using visual odometry (VO) or by using simultaneous localization and mapping (SLAM). However, VO has a drawback because camera sensors require good lighting which will affect the performance of the UAV when it is navigating through a low light intensity environment. Hence, in this paper 2-D SLAM will be use as a solution to help UAV to navigate under a GPS-denied environment with the help of a light detection and ranging (LIDAR) sensor which known as a LIDAR-based SLAM. This is because SLAM can help UAVs to localize itself and map the surrounding of the environment. The concept and idea of this paper will be fully simulated using MATLAB. The expected outcome of this paper is to navigate the drone in a navigation simulator that will be build using MATLAB to extract LIDAR data and to use the LIDAR data to carry out SLAM via pose graph optimization. Besides, the contribution to this research work has also identified that in pose graph optimization, the loop closure threshold and loop closure radius play an important role. The loop closure threshold can affect the accuracy of the trajectory of the drone and the accuracy of mapping the environment as compared to ground truth. On the other hand, the loop closure search radius can increase the processing speed of obtaining the data via pose graph optimization. The main contribution to this research work is shown that the processing speed can increase up to 45% and the accuracy of the trajectory of the drone and the mapped surrounding at the x-axis and y-axis for threshold of 1 has an error of 2.10 m and 10.97 m respectively as compared to ground truth. On the other hand, the accuracy of the trajectory of the drone and the mapped surrounding at the x-axis and y-axis for threshold of 210 has an error of 3.97 and 13.75 respectively as compared to ground truth.