Numerical simulation of segmented ratio in bismuth telluride and skutterudites for waste heat recovery

In this research paper, the thermoelectric performance of the segmented annular thermoelectric generators with the bismuth telluride and skutterudites has been investigated. The effect of the length ratio of the hot-segment leg to total length leg on the thermoelectric performance of the segmented annular thermoelectric generators is analysed and discussed and the optimization design of the annular thermoelectric generator with bismuth telluride and skutterudites as the materials with high thermoelectric performance is obtained. The result of the thermoelectric performance with the manipulated variable of the increase of length ratio, the output power, output voltage and efficiency of the segmented annular thermoelectric generators increase at the beginning then decrease afterwards. Additionally, to compared with the single bismuth telluride and skutterudites annular thermoelectric generators, the output voltage, output power and the conversion efficiency of the segmented annular thermoelectric generators can be improved twice. Lastly, the thermoelectric performance of the segmented annular thermoelectric generators operating in the changes of the temperature. The result has proved that as the temperature increase, the thermoelectric performance of the annular thermoelectric generator will also increase. Hence, the acquired results may be given some useful applications of the bismuth telluride and skutterudites on the segmented annular thermoelectric generators for waste heat recovery.